ring, in astronomy
Saturn has seven rings designated alphabetically as A through G in the order of their discovery. Two additional rings, designated as R/2004 S1 and R/2004 S2 were discovered in images returned to earth from the
Jupiter's rings are similar to those of Saturn but much smaller and fainter. The main ring is about 4,300 mi (7,000 km) wide and has an abrupt outer boundary 80,000 mi (128,940 km) from the center of the planet. The inner main ring is formed from dust and ice particles kicked up when meteoroids collide with the small Jovian satellites Metus and Adrastea. The particles then spiral slowly in toward Jupiter. At its inner edge the main ring merges into the halo. A broad, faint band of dust and particles, the halo is about 6,200 mi (10,000 km) thick and stretches halfway from the main ring down to the top of Jupiter's atmosphere. A pair of broad, faint gossamer rings are located just outside the main ring, one bounded by the orbit of the Jovian shepherd satellite Amalthea and the other by the orbit Thebe.
Uranus has a thin elliptical band of eleven faint, narrow rings composed of ice, rock, and dust. Stretching outward from the planet, the rings are named 1986 U2R, Six, Five, Four, Alpha, Beta, Eta, Gamma, Delta, 1986 U1R, and Epsilon; the distance from the planetary center to the Epsilon ring is 31,750 mi (51,140 km). The rings are distinctly different from those of Jupiter and Saturn. A tenuous distribution of fine dust is scattered throughout the ring system, and the rings all are the same flat, dark color (perhaps from methane or black-carbon ice coating the rock), unlike Saturn's bright rings. The nine main rings consist of a single layer of particles, the monolayer, which had not previously been seen in planetary rings; the particles are kept from drifting away by several shepherd satellites. Because there are ringlets and incomplete rings and a varying opacity in several rings, it is believed that the Uranian ring system may be the remnants of a small moon.
Neptune has four almost circular faint rings composed of small rocks and dust. The rings are not uniform in density and thickness; the thicker parts of the rings are called ring arcs. Stretching outward from the planet, the rings are named Galle, Le Verrier (whose outer extension is called Lassel), Arago, and Adams (which includes the ring arcs Liberty, Equality, and Fraternity); the distance from the planetary center to the Adams ring is 39,000 mi (62,930 km). The forces responsible for the development of ring arcs and ring extensions are not well understood, but shepherd satellites and gravitational forces attributable to Neptune's moons are thought to play a significant role. Earth-based observations indicate that the rings are less stable than was originally believed.
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General