A network of linelike markings first studied in detail (1877) by G. V. Schiaparelli was referred to by him as canali, the Italian word meaning “channels” or “grooves.” Percival Lowell, then a leading authority on Mars, created a long-lasting controversy by accepting these “canals” to be the work of intelligent beings. Under the best viewing conditions, however, these features are seen to be smaller, unconnected features. The greater part of the surface area of Mars appears to be a vast desert, dull red or orange in color. This color may be due to various oxides in the surface composition, particularly those of iron. About one fourth to one third of the surface is composed of darker areas whose nature is still uncertain. Shortly after its perihelion Mars has planetwide dust storms that can obscure all its surface details.
Photographs sent back by the Mariner 4 space probe show the surface of Mars to be pitted with a number of large craters, much like the surface of Earth's moon. In 1971 the Mariner 9 space probe discovered a huge canyon, Valles Marineris. Completely dwarfing the Grand Canyon in Arizona, this canyon stretches for 2,500 mi (4,000 km) and at some places is 125 mi (200 km) across and 2 mi (3 km) deep. Mars also has numerous enormous volcanoes—including Olympus Mons (c.370 mi/600 km in diameter and 16 mi/26 km tall), the largest in the solar system—and lava plains.
In 1976 the Viking spacecraft landed on Mars and studied sites at Chryse and Utopia. They recorded a desert environment with a reddish surface and a reddish atmosphere. Experiments analyzed soil samples for evidence of microorganisms or other forms of life; none was found, but a reinterpretation (2010) of the results in light of data collected later suggests that organic compounds may have been present. In 1997, Mars Pathfinder landed on Mars and sent a small rover, Sojourner, to take soil samples and pictures. Among the data returned were more than 16,000 images from the lander and 550 images from the rover, as well as more than 15 chemical analyses of rocks and extensive data on winds and other weather factors.
Mars Global Surveyor, an orbiter that also reached Mars in 1997 and remained operational until 2006, returned images produced by its systematic mapping of the surface. The European Space Agency's (ESA) Mars Express space probe went into orbit around Mars in late 2003 and sent the Beagle 2 lander to the surface, but contact was not established with the lander. In addition to studying Mars itself, the orbiter has also studied Mars's moons.
The American rovers Spirit and Opportunity landed successfully in early 2004 and explored the Martian landscape; Spirit's last transmission was in 2010, Opportunity's in 2018. In 2008 NASA's Phoenix lander touched down in the planet's north polar region; it conducted studies for five months. Curiosity, another NASA rover, landed on Mars near its equator in 2012.
Analysis of space probes' data indicates that Mars appears to lack active plate tectonics at present; there is no evidence of recent lateral motion of the surface. With no plate motion, hot spots under the crust stay in a fixed position relative to the surface; this, along with the lower surface gravity, may be the explanation for the giant volcanoes. However, there is no evidence of current volcanic activity.
There is evidence of erosion caused by floods and small river systems as well as evidence of ancient lakebeds. The possible identification of rounded pebbles and cobbles on the ground, and sockets and pebbles in some rocks, suggests conglomerates that formed in running water during a warmer past some 2–4 billion years ago, when liquid water was stable and there was water on the surface, possibly even large lakes or an ocean. Rovers have identified minerals and rocks believed to have formed in the presence of liquid water. There is also evidence of flooding that occurred less than several million years ago, most likely as the result of the release of water from aquifers deep underground or the melting of ice. Although recent study has suggested that Mars may have initially had a substantial atmosphere, largely of carbon dioxide, it was mainly lost early in its history, and subsequently the warm conditions required for liquid water may have been rare or intermittent.
Data received beginning in 2002 from the Mars Odyssey space probe suggests that there is water in sand dunes found in the northern hemisphere, and the Mars Reconnaissance Orbiter, which went into orbit around the planet in 2006, collected radar data that indicates the presence of large subsurface ice deposits in the mid-northern and mid-southern latitudes of Mars. Most of the known water on Mars, however, lies in a frozen layer under the planet's large polar ice caps, which themselves consist of water ice and dry ice (frozen carbon dioxide); the lander Phoenix found and observed frozen water beneath the soil surface in the north polar region in 2008. Evidence of a large, salty underground lake in the south polar region, based on data from the Mars Express, was reported in 2018. In 2016 the joint ESA-Roscosmos ExoMars Trace Gas Orbiter began orbiting Mars; in 2018 it began looking for gases indicative of biological or geological processes. The Schiaparelli demonstration lander, which was launched with it, crashed into the surface in 2016.
Sections in this article:
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General