gamma-ray astronomy
Gamma rays are difficult to observe from ground-based telescopes due to atmospheric interference, and high-altitude balloons, sounding rockets, and orbiting observatories are therefore used. Some ground-based facilities, including a large 33-ft (10-m) dish with many small mirrors at Mount Hopkins, Ariz., are successful gamma-ray collectors because they record the radiation emitted by very-high-energy gamma rays as they generate high-speed electrons in the upper atmosphere. Another approach to detecting this radiation is the Milagro detector in the Jemez Mountains of New Mexico. It consists of hundreds of phototubes floating within a pond containing 6 million gallons of water; through interactions with the water, the radiation generates weak trails of light that are detected by the phototubes, yielding data about the energy and direction of the gamma rays.
Cygnus X-3 and the Crab and Vela pulsars are well known gamma-ray sources. In addition, gamma rays have been detected as general background radiation concentrated along the plane of the Milky Way. These gamma rays may result from cosmic rays interacting with gaseous matter in the interstellar medium. Gamma rays from outside the Milky Way have been found emanating from radio galaxies (galaxies whose radio emissions constitute an extraordinarily large amount of their total energy output), Seyfert galaxies (galaxies with extremely bright cores—called Active Galactic Nuclei [AGN]—that are strong emitters of radio waves, X rays, and gamma rays), and supernovas.
The first gamma-ray telescope was carried into orbit on the
The turn of the century saw designs for gamma-ray astronomy satellites that allow for imaging resolution and spectral resolution powers never before possible. Launchings of orbiting gamma-ray observatories include missions such as the High Energy Transient Explorer (HETE-2), launched in 2000, the European Space Agency's International Gamma-Ray Astrophysics Laboratory (INTEGRAL), launched in 2002, the Swift Gamma Ray Burst Explorer, launched in 2004, and the Fermi Gamma-Ray Space Telescope, launched in 2008. Swift detected (2009) an extremely distant gamma-ray burst (more than 13 billion light-years from Earth) that may be associated with the supernova of a blue giant star of the early universe, and Fermi has discovered hundreds of gamma-ray sources.
In 1967 a Vela military satellite designed to detect nuclear explosions discovered the first gamma-ray bursts (GRBs). These events are very short-lived, lasting from about 50 milliseconds to, in extreme cases, several minutes, and occur on an almost daily basis. It has been suggested that the formation of black holes is associated with these intense gamma-ray bursts. Beginning with a giant star collapsing on itself or the collision of two neutron stars, waves of radiation and subatomic particles are propelled outward from the nascent black hole and collide with one another, releasing the gamma radiation. Also released is longer-lasting—from a few days to several years—
See G. E. Morfill, ed.,
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General