physics: Advances in Electricity, Magnetism, and Thermodynamics
Advances in Electricity, Magnetism, and Thermodynamics
The study of electricity and magnetism also came into its own during the 18th and 19th cents. C. A. Coulomb had discovered the inverse-square laws of electrostatics and magnetostatics in the late 18th cent. and Alessandro Volta had invented the electric battery, so that electric currents could also be studied. In 1820, H. C. Oersted found that a current-carrying conductor gives rise to a magnetic force surrounding it, and in 1831 Michael Faraday (and independently Joseph Henry) discovered the reverse effect, the production of an electric potential or current through magnetism (see induction); these two discoveries are the basis of the electric motor and the electric generator, respectively.
Faraday invented the concept of the field of force to explain these phenomena and Maxwell, from c.1856, developed these ideas mathematically in his theory of electromagnetic radiation. He showed that electric and magnetic fields are propagated outward from their source at a speed equal to that of light and that light is one of several kinds of electromagnetic radiation, differing only in frequency and wavelength from the others. Experimental confirmation of Maxwell's theory was provided by Heinrich Hertz, who generated and detected electric waves in 1886 and verified their properties, at the same time foreshadowing their application in radio, television, and other devices. The wave theory of light had been revived in 1801 by Thomas Young and received strong experimental support from the work of A. J. Fresnel and others; the theory was widely accepted by the time of Maxwell's work on the electromagnetic field, and afterward the study of light and that of electricity and magnetism were closely related.
Sections in this article:
- Introduction
- Particles, Energy, and Contemporary Physics
- Relativity and Quantum Mechanics
- Birth of Modern Physics
- Advances in Electricity, Magnetism, and Thermodynamics
- Development of Mechanics and Thermodynamics
- The Scientific Revolution
- Preservation of Learning
- Greek Contributions
- Modern Physics
- Classical Physics
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Physics